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Abstract
Following our earlier gauge field theory analysis of the diffusion and interactions of classical
and quantum waves with topological defects in solids (screw and edge dislocations), we present
the analysis of the interaction of a classical spin wave with a screw dislocation studied within
the Heisenberg ferromagnet model in which spins are located on a lattice containing
dislocations. We show that the spin wave interaction with the screw dislocation shows a
similarity to the Aharonov–Bohm-like deflection found previously for scattering of acoustic
waves on the same type of defects.

One of the early applications of gauge field theory in
condensed matter physics was that which described the
influence of the frozen-in elastic distortions of the crystalline
lattice due to topological defects, for example dislocations,
on various other elastic properties of the crystal [1]. This
formulation turned out to be equivalent to the differential
geometry approach developed by Kröner [2]. In the recent
publication [3] we compared [1] with other uses of gauge
field theory in the theory of dislocations [4–6]. In the
theory [1] one assumes Euclidean symmetry of the elastic
energy density in the undistorted defect-free ‘reference’ state.
The gauge group consists then of linear transformations
of the Lagrange coordinates, representing the positions of
material points in the reference state, at constant Euler
coordinates which represent the displaced positions in the
strained material. Due to this [1, 3] incorporate some
important nonlinear couplings between dislocation-induced
and otherwise generated distortions missing from [4–6]. Those
couplings turn out to be essential in the analysis of diffusion [7]
or sound propagation in a crystal with dislocations [3, 8]. The
continuum gauge field theory of dislocations [1] has been used
to analyse also the quantum particle dynamics in the crystal
containing both edge and screw dislocations [10–12]. The
scattering of quantum particles on the screw dislocations have
also been discussed in [9] following the differential geometry
formulation of the defects theory [2].

In [11] we have shown a systematic procedure to derive the
Schrödinger equation from a microscopic lattice model, in that

case a tight binding one, which is identical to that following
from the use of the gauge field theory approach [13, 1, 3].
That procedure relies on a generalization of the expansion
procedure leading from the lattice (discrete) to the continuum
description of the medium properties, which consists of formal
O(a2) expansion in the bare lattice constant and O(β2(x))

expansion in the Kröner distortions β describing topological
defect distributions in the lattice.

In this paper we report the results of the procedure [11] ap-
plied to the classical, nearest-neighbour, isotropic Heisenberg
magnet model residing on a lattice containing dislocations. We
shall formulate here the general theory and show exact results
for the spin wave interaction with a frozen-in distortion due to
a screw dislocation. That allows us to elucidate the difference
between our theory and the earlier work of Kutchko and col-
laborators [15, 16]. The analysis of the modifications due to
the phonon coupling will be discussed elsewhere.

The Landau–Lifshitz equation for a spin vector field S(x):

∂tS(x) = Ja2S(x) × ∇2S(x) (1)

after linearization around static and constant ‘magnetization’
S0 describes spin waves with dispersion relation ω(q) =
Ja2S0q

2. Equation (1) follows from the continuum
approximation (O(a2); a → 0 expansion) of the equations of
motion for classical spins described by the classical Heisenberg
ferromagnet Hamiltonian:

H = 1
2

∑

n,a(n)

J (n,n + a(n))S(n) ·S(n + a(n)) (2)
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where the vector n denotes a simple cubic lattice site position,
{aα(n)}; α = 1, . . . , d is the set of the lattice vectors and
S(n) the spin vector on that site. J (n,n + a(n)) denotes
the nearest-neighbour exchange interaction. In the undistorted
lattice, in some coordinate system, ai

α(n) = aδi
α, where a is

the bare lattice constant.
Consider now a distorted lattice. Defects caused Kröner

lattice distortions β i
j(n) = Bi

α(n)δα
j − δi

j , known for
essentially all topological defects [2], change the global
equivalence of the set of the lattice vectors {aα(n)}. To carry
out the sum in equation (2) we use the procedure discussed
in [11] of decomposing that set into {a+

α (n),a−
α (n)}, where

a−
α (n) are essentially opposite to a+

α (n) (in the sense of the
distorted lattice geometry). To the second order in Bα we
have [11]

a±
α (n) = ±aBα(n) + a2

2

(
Bα(n) · ∂

∂n

)
Bα(n), (3)

and subsequently up to O(a2,Bα)

S(n + a±
α (n)) = S(n) ± a

(
Bα(n) · ∂

∂n

)
S(n)

+ a2

2

(
Bα(n) · ∂

∂n

)2

S(n). (4)

In the limit a → 0 the matrix fields Bα and its
inverse Bi

α Bα
j = δi

j provide the continuum description of
the distorted crystal by a Riemann–Cartan manifold with the
metric tensor gi j = δαβ Bα

i Bβ

j and affine connection �k
i j =

Bk
α∂i Bα

j [2, 11]. Using that interpretation we can rewrite the

O(a2,β2) Heisenberg Hamiltonian (2) in the covariant form

H = Ja2

2

∫
dd x

√
ggi jS(x) · ∇i∇ jS(x), (5)

where g = det gi j , gi j is the inverse of gi j and ∇i

denotes covariant derivative with respect to connection
�k

i j . In (5) we have retained only those terms in the
Hamiltonian (2) expansion which correspond to the exchange
interaction J independent of the lattice position. Note
that the Hamiltonian (5) describes the purely topological in
nature interaction between the dislocation and magnetization
∝S(x) via the differential geometric structure of the
effective Riemann–Cartan manifold describing the medium
with defects.

In a real crystal one should also include two additional
couplings between the magnetic degrees of freedom and the
crystalline lattice. Both of them will contribute non-covariant
terms to the Hamiltonian (5). The first one is due to the
localized change in the exchange integral J (n) caused by the
presence of the dislocation core. The second one is caused by
the magnetostriction, that is the dependence of J on the lattice
vibration phonons described by the field u(n):

J (n,n + a(n)) → J (n,n + a(n))

+ γ · (u(n) − u(n + a(n))) , (6)

where γ = ∂ J (n)/∂n.
Inserting this expansion into the Hamiltonian (2) we found

that the lowest-order, nonvanishing, in a2,β2 term in the

u − S coupling contributes a term ∝S2γ · gi j∇i∇ ju to the
Hamiltonian density. Since S2 is the constant of motion for the
Heisenberg model there are no corrections to the equations of
motion for spin components resulting from that term. This is
reminiscent of the complete integrability of the compressible
Heisenberg model (2) in d = 1 discussed in [14]. The
nontrivial magnetostriction coupling between the phonon’s and
the spin degree of freedom appears in higher order with respect
to a2.

The coupling discussed above between the topological
defects and the spin degrees of freedom distinguishes our
model from that used in [15, 16] in which the coupling
between the dislocation caused lattice distortion and the spins
were described by the term in the Hamiltonian density of the
form ∝σ D

i j Si S j , where σ D
i j stands for the stress tensor in the

elastic medium due to the localized dislocation [17]. The
latter term was added to the usual Heisenberg Hamiltonian by
phenomenological arguments which are not born out by our,
microscopic in origin, analysis.

To describe the coupling between spins, dislocation-
induced distortion and phonons, we have to employ the gauge
field formulation for both spin and phonon fields. The latter
dynamics was discussed in [3]. Using those results we have to
add to the Hamiltonian density in (5) the effective energy for
the phonon field interacting with topological defects, namely

δH(x, t) ≡ 1
2 [Di uα(x, t)]Ciα jβ(x)[D j uβ(x, t)], (7)

where the gauge covariant derivative Di ≡ Bα
i (x)∂α. The

space-dependent coefficients Ciα jβ(x) ≡ (Bα
k (x)cik jl Bβ

l (x) +
Si j(x)δαβ) are the effective elastic constants, replacing bare
coefficients ci jkl , and Skl is the stress tensor due to the frozen-
in defects Skl = 1

2 ckli j [Bα
i (x)δαβ Bβ

j (x)− δi j]. We have shown
in [3] that the solutions for the Lamé equations following
from the phonon Hamiltonian (7) exhibit Aharonov–Bohm-
like behaviour in the presence of the screw dislocation.

We shall show now that the same situation occurs for pure
spin waves as described by the Hamiltonian (5). Using the spin
Poisson brackets {Sa(x), Sb(y)} = (δ(x − y)/

√
g)εabc Sc(x)

we found, from (5), that the covariant form of the Landau–
Lifshitz equation of motion (1) is

∂tS(x) = Ja2S(x) × B̂S(x), (8)

where B̂ denotes the wave operator:

B̂ = gi j [∇T
i ∇ j + ∇T

i T k
jk]. (9)

Here ∇T
i = ∇i + 2T k

ik and T k
i j = �k

i j − �k
j i is the torsion

tensor [1, 2].
Linearizing now equation (8) around a constant is the

space stationary solution S = S0ez , we obtain the covariant
equation for spin waves in the ferromagnet containing defects
whose density is described by the Riemann–Cartan manifold
torsion tensor T k

i j . Writing S(x, t) = S0 + δS(x, t)
and introducing for convenience the complex amplitude
S0�(x, t) = (δSx(x, t) + ıδSy(x, t)) we obtain the
Schrödinger-like equation for � , namely

ı∂t�(x, t) = − 1

2μ
B̂�(x, t) (10)
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where μ = 1/2Ja2S0. Equation (10) is the spin wave
analogue of the Kawamura equation [19, 20] which leads to the
Aharonov–Bohm [18]-like solutions for the waves interacting
with a defect.

Note that, as discussed above, relaxing our assumption
made in equation (5) J = const, we would obtain additional
terms in the Hamiltonian (5) which, following [11], we
should call non-covariant. It follows from the Kawamura
analysis and our previous work that it is the covariant term (5)
which describes the fundamental properties of the topological
interaction between the spin degrees of freedom and the lattice
distortion. The non-covariant terms can then be treated by
means of the perturbation theory as discussed in [12]. We shall
return to these additional effects in a subsequent publication.

We shall now present the solution of equation (10) for
a single screw dislocation along the z axis with the Burgers
vector b = bez . The only nonvanishing components of the
Kröner distortions β i

j are then β3
i , i = 1, 2:

β3
1 = − b

2π
∂2 ln

√
(x1)2 + (x2)2

β3
2 = b

2π
∂1 ln

√
(x1)2 + (x2)2.

(11)

Assuming in the cylindrical coordinates �(r, φ, z, t) =
χ(r, φ) exp(ikz + iωt) we found that the envelope χ(r, φ)

obeys the Aharonov–Bohm equation [18]:
[

∂2

∂r 2
+ 1

r

∂

∂r
+ 1

r 2

(
∂

∂φ
+ ıα

)2

− q2

]
χ(r, φ) = 0, (12)

where α = kb/2π and q2 = k2 + 2μω. Using the asymptotic
r → ∞ solution for that equation [12, 18–20] and recalling
the definition of the function � we found(

δSx

δSy

)
= S0

(
cos

− sin

)
(αφ + qr cos φ)

+ sin(πα)

cos(φ/2)
√

2πqr

×
(

cos
sin

)
(qr + α(φ − π)/2|α| − π/4). (13)

In the absence of the dislocation the (pseudo)flux α = 0 and
we recover the standard spin wave solution of equation (1).
The first term on the rhs of equation (13) shows the helical
structure of the incoming spin wave due to global distortion of
the lattice and the second describes the scattering phase shift
due to the presence of dislocation. In figure 1 we have shown
a Mathematica 7 generated density plot for the δSy component
of the solution (13). The δSx component exhibits an identical
structure with a trivial phase shift found from (13).

The above-presented solution for the spin waves
propagating on a lattice containing a screw dislocation
completes our analysis of how the topological defects, such as
dislocations, modify the wave phenomena in solids [3, 10–12].
The analysis has been systematically carried out within the
scope of the gauge field theory formulation of the defect theory
from [1]. The most significant result of that endeavour is that
the Aharonov–Bohm-like oscillation are prevailing in all wave
phenomena in condensed matter where the medium carrying

4
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0

–2

–4

–40 –20 0 20 40

δSy component of the Spin Wave

Figure 1. Mathematica 7 density plot for spin wave Sy solution
equation (13). The wave is approaching from the right and deflects
from the screw dislocation line located at the origin and
perpendicular to the plot surface. The wavy edges of the cut to the
left from the dislocations show the Aharonov–Bohm-like oscillations
determined by the (pseudo)flux α = 0.4.

(This figure is in colour only in the electronic version)

waves can be modelled as the manifold with a torsion sharing
topological similarity with the simple case discussed in the
pioneering work [18]. Since the description we use is directly
borrowed from field theory and general relativity [5, 13] it is
tempting to suggest that this should also be the case in the
other applications, for example propagation of the gravitational
waves in the universe with torsion. The anisotropy discussed
in [12] of the scattering cross section for matter waves on the
screw dislocation, resulting from the non-covariant part of the
Hamiltonian caused by the local deformation of the medium
next to the defect core, might also be a new and important
property for general relativity applications.
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